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S L I G H T L Y  N O N E Q U I L I B R I U M  C O N D E N S A T I O N  O F  A 

S A T U R A T E D  V A P O R  ON A L I Q U I D  S U R F A C E  

S. P .  R a d e v  UDC 536.423.4 

A solution of the Barne t t  equations is obtained for  the p rob l em of slightly nonequi l ibr ium vapor  
condensation on a liquid sur face .  It  is shown that a Barne t t  sublayer  with nonzero p r e s s u r e  
gradient  ex is t s  inside the nonequi l ibr ium wall  l ayer .  The sublayer  d iminishes  the in terphase  
condensation r e s i s t a n c e  and induces supe r sa tu ra t ion  of the vapor .  

In the p r e s e n t  a r t ic le  we solve the p rob lem of s t eady - s t a t e  sl ightly nonequi l ibr ium ("slow") condensation 
of a sa tu ra ted  vapor  on a plane infinite liquid sur face  on the bas is  of the s impl i f ied Barne t t  equations [1]. The 
m o s t  comple te  s t a tement  of this p rob lem is obtained within the f r a m e w o r k  of the kinetic theory  of gases ,  where  
it  is known to be reducible  to the solution of the Bol tzmann equation with the appropr i a t e  boundary condition on 
the sur face  of the condensed phase .  However ,  under  the condition of sl ight nonequi l ibr ium of the condensation 
p r o c e s s  the s ta te  of the vapor  outside a ce r ta in  Knudsen "wad  l aye r"  can be desc r ibed  in t e r m s  of hydrodyna-  
mica l  equations der ived  f r o m  the Bol tzmann equation by the C h a p m a n - E n s k o g  method. The boundary condi-  
t ions n e c e s s a r y  for  closing the hydrodynamica l  equations a re  deduced f r o m  the solution of the Bol tzmann equa-  
tion (or a modificat ion thereof) in the Knudsen w a d  layer .  The N a v i e r - S t o k e s  equations a r e  usual ly used here .  

In this set t ing,  boundary conditions have been obtained for  m a s s  flux toward the sur face  (of the H e r t z -  
Knudsen type) and for  a t e m p e r a t u r e  jump [3-7]. The t e m p e r a t u r e  dis tr ibut ion in a nonequil ibr ium vapor  l ayer  
has  a lso  been found [3] on the bas i s  of the N a v i e r - S t o k e s  equations.  

Below we fo rmula te  the slightly nonequi l ibr ium condensation p rob lem on the bas is  of the s implif ied B a r -  
nett  dis t r ibut ion function obtained in [1] by a modif ied C h a p m a n - E n s k o g  method. F r o m  this function and the 
conditions of m a s s ,  ene rgy ,  and normal  momen tum balance inside the vapor  volume we use the s tandard p r o -  
cedure  to obtain the Barne t t  equat ions,  in which the one-d imens iona l i ty  of the vapor  flow is automat ica l ly  taken 
into account.  F r o m  the s implif ied Barne t t  function and these same  balance conditions on the sur face  of the 
condensed phase  we deduce boundary conditions by the c l a s s i ca l  method of Maxwell [9], c losing the Barne t t  
equations.  

The stated p rob l em  is solved c o r r e c t  to f i r s t - o r d e r  t e r m s  in the di f ference between the vapor  p r e s s u r e s  
at infinity and on the liquid sur face .  We p e r f o r m  numer ica l  calculat ions for  the case  of s team.  

Sofia, Bulgar ia .  T r a n s l a t e d  f rom Inzhenerno-F iz i chesk i i  Zhurnal ,  Vol. 35, No. 5, pp. 851-857, Novem-  
be r ,  1978. Original  a r t i c l e  submit ted  Sep tember  2, 1977. 
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Fig. 1. CoordInate system. 

Let  us consider  the s t eady- s t a t e  one-d imens iona l  condensation of a sa tu ra ted  vapor  on a liquid sur face  
or iented  along the axis  0x. Inasmuch as  the p rob l em does not have a cha r ac t e r i s t i c  l inear  d imension,  the 
coordinate no rma l  to the in te rphase  sur face  is  r e f e r r e d  to the mean  f ree  path hoe of the molecu les  at  a suff i -  
cient  d is tance f r o m  the liquid phase ,  and the d imens ion less  coordinate  is  then denoted by y (Fig. 1). The m a s s  
flow r a t e ,  t e m p e r a t u r e ,  dens i ty ,  and p r e s s u r e  of the vapor  a re  a lso  reduced to d imens ion less  f o r m  (denoted 
by, r e s p e c t t v e l y ~ v , T , n ,  and p) by means  of the cor responding  sca l e s  c,o, T,o, nee, and mmoc~o = 2poe, where  
c,o is  the a v e r a g e  veloci ty  of the molecu les ,  Too, noo, and Poe a r e  the t e m p e r a t u r e ,  dens i ty ,  and p r e s s u r e  at  a 
l a rge  d is tance  f r o m  the su r face ,  and m is the mo lecu l a r  m a s s .  The vapor  Is a s sumed  to consis t  of Maxwel-  
l ian molec tdes .  

Under these  a s sumpt ions  the Barne t t  equations [1] take the f o r m  

(pV)' = O, 

pVT' = 2 TVp' ' 3 --g- -,---g- b,T", 
(1) 

2pV(TV) ,=~p,_L 2 { b] [ T 3 T " ] ' }  , ~ b ,  (TV)"-i- ~ --~(Inp)"-- 2 p ' 

where  the p r i m e  denotes different ia t ion with r e s p e c t  to the new Independent va r i ab le  

Y 

'. (2) II= T 
0 

and V = v/*r is the new unknown function. 

I t  is r ead i ly  seen that  Eq. (10 is the equation of m a s s  conserva t ion ,  (12) is the equation of ene rgy  con-  
se rva t ion ,  and (13) is the ene rgy  of no rm a l  m o m e n t u m  conservat ion.  Barne t t  t e r m s  occur  only in (13), where  
they a re  grouped in b r a c e s  for  c lar i ty .  As a r e su l t  of these t e r m s  the o r d e r  of the s y s t e m  of o rd ina ry  d i f f e ren-  
tial equations (1) is twice the o rde r  of the cor responding  N a v i e r - S t o k e s  sys t em.  The constant  b I co r responds  
to the adopted model  of Maxwell ian molecu les  and is equal to 2/(37rA2(5)) (A2(5) is given in [2]). 

Next i t  is  requi red  to specify  the n e c e s s a r y  number  of boundary conditions desc r ib ing  the s ta te  of the 
vapo r  both a t  a l a rge  dis tance f r o m  the phase  In te r face  (7 "* ~o) and close to it  (~ = 0). By assumpt ion ,  as r/ --- 
,o the vapor  is sa tu ra ted  and has  the cor responding  d imens ion less  t e m p e r a t u r e  and p r e s s u r e  (density) 

T(oo) = |, p ( o o ) :  1/2 (n(oo)= l). (3) 

If we denote by Ps(T) the sa tu ra ted  vapor  p r e s s u r e  at  the t e m p e r a t u r e  T ,  then p(oo) = ps[T(~o)]. We use  
conditions (3) as  the boundary conditions for  the s y s t e m  (1) in the case  7/ --* % We add to it the condition of 
smooth matching  of the p r e s s u r e  with the unper turbed  p r e s s u r e  p(~o) 

p' (oo) = 0. (4) 

Note that the condition for smooth matching of the temperature T' (~o) = 0 is a consequence of the first condition 

(3) and the form of Eqs. (i). 

We obtain the boundary conditions at the phase interface by means of the simplified Barnett function f 
f r o m  [1]. Suppose that the sur face  has  s t e m p e r a t u r e  T w < 1, which co r re sponds  to a sa tu ra ted  vapor  p r e s -  
sure  Pw = Ps(Tw ) < p(oo). At the in te r face  phase  ~ = 0 we demand that the function f sa t i s fy  the s ame  conditions 
of m a s s ,  ene rgy ,  and normal  momen tum balance as those f r o m  which the Barne t t  equations (1) were  obtained. 
Following the c lass ica l  Maxwell method [9], we wri te  these conditions in the in tegra l  f o r m  
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2.w S Q~cuf(c.~' cu' Q)dc=(1- -J3)  f Q~c,jf(c:,,--c,j, c , )dc-k~ 3/2T~/~ Q~c,jexp(--~2/T~)dc, (5) 
Cy> 0 Cg> 0 cy>O 

where Qj = 1, Cy, (1/2)c 2 (j =1, 2, 3), f(cx, Cy, c z) is the Barnet t  function at 11 = 0, and/3 is the coefficient of 
condensation. 

In the derivation of conditions (5) we use the conventional scheme of the mechanism of molecular  in ter -  
action at the surface of the condensed phase,  so that the coefficient of condensation (evaporation) represen ts  
the fract ion of molecules  captured by the surface.  The flow of ref lected molecules is assumed to consist  of 
specular ly [first t e rm on the r ight-hand side of (5)] and diffusely (second term) reflected molecules.  

Inasmuch as the Barnet t  function is expressed in t e rms  of the hydrodynamic pa rame te r s  and their  de r iva -  
t ives in the C h a p m a n - E n s k o g  method, conditions (5) in terre la te  the mass  flow ra te ,  t empera tu re ,  p r e s su re ,  
and their der ivat ives  at the surface of the condensed phase. Essent iaI ly,  on the basis of (5) for j = 1 we have 
a condition of the H e r t z - K n u d s e n  type, for j = 2 a t empera tu re - jump condition at the surface ,  and for j = 3 
another condition s imi lar  in fo rm to the preceding one. To avoid unwieldy notation we give the specific form 
of conditions (5) below and then take advantage of the possibil i ty of simplifying them to some extent. The B a r -  
nett function needed in o rder  to compute the integrals  in (5) can be found from the solution of the integral  equa- 
tions [1] by expension in Sonine polynomial ser ies .  The complete Barnet t  function [11] can also be used. 

Below we give the solution of the Barnet t  equations (1) subject to the boundary conditions (3)-(5), a s s u m -  
ing a slightly nonequilibrium condensation p rocess ,  i .e. ,  Ap = P(~) -Pw ~ T(~176 << 1. As a resul t ,  the con- 
densation is also a "slow" p r o c e s s :  V << 1. 

For  completeness  we f i r s t  d iscuss  the N a v i e r - S t o k e s  approximation of the slow condensation problem. 
It is obtained f rom the Barnet t  equations (1) by replacing Eq. (13) therein by the condition (4) of constant p r e s -  
sure ac ros s  the nonequilibrium vapor layer .  In this case Eqs. (11) and (12) are integrated in an obvious way: 

2pV = M, (6) 

( ' - )  7 " = I  + [ r ( O ) - - l l e x p  -~---~-n , (7) 

where the constants of integration M < 0 and T(0) have the significance of, respect ively ,  the mass  flux and 
tempera ture  at the interface.  Inasmuch as the f i r s t  boundary condition (3) has a l ready been used in (7), these 
constants must  be determined f rom the boundary conditions (5). In the set  of conditions (5) it is cus tomary 
to use the conditions for j = 1 and j = 2. wri t ten co r r ec t  to the N a v i e r - S t o k e s  t e rms .  In par t icu lar ,  f rom these 
conditions we obtain the es t imates  M ~ ~p,  T(0) = T w + T(0), where the tempera ture  jump v(0) is also of o rder  
Ap. It is well known that the third condition (5) cannot be satisfied,  due to the incompatibility of the boundary 
conditions (5) in application to the N a v i e r - S t o k e s  equations. 

Consequently, assumption (4) is inapplicable to the Barnet t  equations as well, implying the presence  of 
of a Barnet t  wall sublayer  with nonzero p re s su re  gradient directed toward the liquid phase. This effect has 
been noted ea r l i e r  [10]. It is reasonable to assume that express ion (7) retains its form in transi t ion ac ross  
the boundary of the sublayer, i.e., T = T w + z(T/) and r' ~ Ap 2. In determining the increment to the unper- 
turbed pressure p(~o) we stop with first-order terms in Ap, i.e., 

P = P= -- P ('1), (8) 
where P' ~ A p .  

Under the given assumptions we obtain the following est imate  f rom the energy equation: T" ~ Ap2. This 
implies that the solution for the tempera ture  in the form (7) can be used up to the surface ,  including the wall 
sublayer ,  if the tempera ture  jump T(0) and the mass  flux M are refined in accordance with the complete s y s -  
tem of boundary conditions (5). 

Retaining only t e rms  of o rde r  Ap in (13)  , w e  obtain a l inear th i rd -o rde r  differential equation for the p e r -  
turbed p res su re  P: 

p,., 6 p~- {oo) p, = O. (9) 
b~ T,. 
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Fig. 2. Mass  flux M vs'AT. 1) N a v i e r - S t o k e s  app rox i -  
mation;  2) Barne t t  approximat ion;  3) 13- t ime a p p r o x i m a -  
tion; 4) BGK approximat ion;  5) H e r t z - K n u d s e n  formula .  

Fig. 3. N o r m a l i z e d - p r e s s u r e  p rof i l es  tY in Barne t t  sub-  
l aye r .  1) AT = 2~ 2) AT = 10~ 

o z / 
2 a I 

, , . . / / i / ' /  __l 

Fig. 4. Normalized tempera- 

ture ~ and density n'. Barnett 

approximation: 2) AT = 10~ 4) 

AT = 2~ Navier-Stokes ap- 

proximation: 1) AT = 10~ 3) 

AT = 2~ 

F r o m  the physica l  point of view of Eq. (9) e x p r e s s e s  the r e q u i r e m e n t  that inside the Barne t t  wall  sublayer  
the pr inc ipa l  t e r m s  in the N a v i e r - S t o k e s  and Barne t t  approx imat ions  have the same o rde r  with r e s p e c t  to Ap. 
If we denote by L B the d imens ion less  th ickness  of the wall  sub layer ,  we obtain the following e s t ima te  f r o m  (9): 
L B ~ 1. We know that the th ickness  of the main  nonequi l ibr ium vapor  l aye r  L m ~ Ap -1. Consequently,  in the 
p r i m a r y  phys ica l  v a r i a b l e s  the Barne t t  sub layer  has  a th ickness  of the o r d e r  of the mo lecu l a r  mean  f ree  path,  
w h e r e a s  the th ickness  of the main wall  l aye r  is  much g r e a t e r  than/~o (Lip << 1). Using the second boundary 
condition (3) and condition (4), we wri te  the solution of Eq. (9) in the f o r m  

( V'6 p(c~) ) (10) 
P -- p (0) exp bl T w ~ ' 

where  P(0) is a constant  of in tegra t ion and has the s ignif icance of the p r e s s u r e  at  the phase  in te r face .  

Af te r  de te rmin ing  the integrat ion constants  M, T(0), and P(0) f r o m  Eqs.  (6)-(8), (10) we obtain the final 
solution of the given p rob lem.  These  constants  m u s t  be evaluated f r o m  the boundary conditions at  the sur face  
(5). Introducing s impl i f ica t ions  that  a r e  admiss ib le  within the f r a m e w o r k  of the Barne t t  sub layer ,  we reduce 
conditions (5) to the f o r m  (T/ = 0) 
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M = - -  

M --- 

1--0.5[g V ~  - - A P - -  P 2 T~ ' 

l -  0. ,~ 5 V ~v---~- 5 -  P i , 

l /" "-~-- Ap. M = ] /  

(11) 

The physical  meaning of the boundary conditions (11) was discussed in the derivation of conditions (5). 
F r o m  the mathematical  point of view (11) represen ts  a sys tem of two l inear  a lgebraic  equations for the de te r -  
mination of z(0) and P(0) (M is determined automatically),  the solution of which yields 

32 - -  9rt 
P (0) - ap, 

12 (12) 

3a - -  8 
r (0) . . . .  Twh p. 

6 

Note that by putting P = 0  in (111) and (112) we obtain the N a v i e r - S t o k e s  approximation for the condensa-  
tion problem (with a t empera ture  jumpS. We use this approximation below for  comparison with the solution 
of the Barnet t  equations. 

The presence  of a nonzero p re s su re  gradient in the Barnet t  wall sublayer induces a jump in the vapor 
p r e s su re  at the phase interface P(0)> Pw, which dec reases  the interphase condensation res is tance.  With r e -  
gard to the tempera ture  jump, the Barnet t  equations exhibit an analogous effect:  It is slightly diminished. On 
the whole, however ,  the mass  flux calculated according to the N a v i e r - S t o k e s  equations is g rea te r  than the 
value determined f rom the Barnet t  equations. 

Another physical  effect  is associated with the exhibited inconstancy of the p r e s s u r e  in the Barnet t  sub-  
l ayer :  The vapor inside the sublayer  is supersaturated.  This effect  has also been discussed in [3, 10]. 

The calculations ca r r i ed  out below apply to the case of s team at a t empera ture  T~ = 303~ and a coeffi-  
cient of condensation (evaporation) fl = 1. 

The mass  fluxes calculated according to the different approximative models  are  compared in Fig. 2. All 
the curves except curves  1 and 2 are borrowed f rom Gajewski and others  [8]. It is apparent  f rom the figure 
that the mass  flux in the Barnet t  approximation agrees  well with the numer ica l  solution based on the Bhatna- 
g a r - G r o s s - K r o o k  (BGK) model in [8]. 

Figure 3 gives the profile of the normal ized p res su re  p = 1 - [p - p (~)y [pw-p(=) ]  in the Barnet t  sub- 
layer  for two values of the tempera ture  difference:  15 AT = 2OK (curve 15; 25 AT = 10OK (curve 25. 

Profi les  of the normal ized tempera ture  ~ = 1 - [ T - T ( ~ ) ] / [ T w - T ( ~ ) ]  and normal ized density ~ = 1 -  [ n -  
n(~)Y[nw-n(~)]  are  given in Fig. 4 in the Barnet t  and N a v i e r - S t o k e s  approximation for two values of the t e m -  
pera ture  difference:  AT = 2~ and 10~ The figure reveals  a cha rac te r i s t i c  density maximum in the Barnet t  
sublayer ,  c lear ly  a consequence of the var iable  p r e s s u r e  profile (it does not occur  in the N a v i e r - S t o k e s  ap-  
proxirpation). 

The solution obtained in the presen t  ar t ic le  for the slightly nonequilibrium condensation problem is more  
or  less of a formal  nature. However,  the physical  significance of the effects disclosed by it suggests  at least  
the possibili ty of its compatibility with the concept of the Knudsen sublayer.  

N O T A T I O N  

All the subscr ipts  with the quantities ~o are dimensioned and correspond to the state of the vapor at a large 
distance f rom the liquid phase; al l  others are dimensionless; .  

bl 
coo 
~(c x, Cy, c z) 
f 
m 
M 

is the constant of the molecular  model; 
is the average thermal  velocity of molecules;  
is the molecular  velocity vector ;  
is the Barnet t  distribution function [1]; 
is the molecular  mass ;  
is the mass  flux toward the sur face ;  
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n and n~  
~'= 1 -  [n-n(~o)V[nw-n(~)] 
p and p~o 
Ps{ T) 
Pw = P$ (Tw) 

P 

T and T~o 
Zw 
T = 1--[T-T(~o)V[T w -- T(r 
V 

Y 

;k~o 
T 

Ap = p(~) - Pw 
�9 '~W = T~[T(')-TwlK. 

are  the numer ica l  densi t ies;  
is t h e  normal ized  density;  
a re  the p r e s s u r e s ;  
is the saturated vapor  p r e s su re  at  t empera tu re  T; 
is the saturated vapor  p r e s s u r e  on the surface:  
is the normalized pressure; 
is the perturbed pressure in the Barnett sublayer; 
are the temperatures; 
is the temperature of liquid surface; 
is the normalized temperature; 
is the t r ansve r se  component of mass  flow ra te ,  V = v/T. 
is the t r a n s v e r s e  coordinate;  
is the new ix/dependent var iable  (2); 
is the mean f ree  path of molecules ;  
is the pe r tu rbed  t empera tu re  in the Barnet t  sublsyer ;  
a re  smal l  p a r a m e t e r s  of the problem;  
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